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• .ABSTRACT

A DECOMPOSITON PROCEDURE FOR CONVEX QUADRATIC PROGRAMS

C. M. Shetty
Mohammed Ben Daya

School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0205

This paper deals with the solution of convex quadratic programs by

* iteratively solving a master problem and a subproblem as proposed

previously by Sacher. The approach has the advantage that the

subproblems are linear programs so that existing schemes for solving

large problems can be taken advantage of. This paper gives a closed form

solution to the master problem so that the procedure is well suited for

solving large quadratic programs and can take advantage of the constraint

structure.
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1. INTRODUCTION

Consider the following quadratic program

It t
QP: minimize 2 xtBx + c x

subject to Ax > b
x-> 0

n Rmxn -

where x e Rn , A c and B is positive semi-definite.

A decomposition algorithm using Lemke's method was proposed by

Sacher [1] to solve Problem QP. The method solves the original problem

by iteratively solving a master program and a subprogram.

In this paper, we solve the master program using the gradient

projection method of Rosen [2] in Section 3 and by the Reduced Gradient

Algorithm in Section 5. The methods take advantage of the special

structure of the master program and reduce the algorithms to simple

arithmetic calculations.

2. The Sacher Algorithm

Sacher's procedure uses an inner linearization approach followed by

restriction and is a nonlinear version of the Dantzig-Wolfe decomposition

principle [3]. His algorithm is essentially of von Hohenbalken's

simplicial decomposition method [4] [5] when specialized to a quadratic

objective function.

Algorithm:

Step 0:

Let P and Q be matrices whose columns are affinely independent

extreme points and directions respectively of the set {x: Ax > b, x > 0}.

Eere P must have at least one column, but Q may be vacuous.



Step 1:

(Master program). Solve the following problem by Lemke's method.

tMP: minimize v B( + c(v

t

subject to e u = 1; u > 0, v > 0

where = (PQ) tB(PQ) and c (Ptc). Denote the solution by [u,v]. If
Qtc

the solution is unbounded, STOP. The original problem has an unbounded

objective function.

Step 2:

Set x = Pu + Qv.

Step 3:

(Subprogram). Solve the following program.

SP: minimize htx

subject to Ax > b, x > 0

where h = BPU + BQv + c. If the solution is bounded denote it by x.

Otherwise, let x be a (normalized) direction of recession for which

F ht < 0.

Step 4:

Stop if x is an extreme point and h x = h xhthe solution to QP is x;

otherwise go to Step 5.

Step 5:

(Updating). If ui = 0 (vi 0 , respectively), delete column i of P

(Q, respectively). If x is an extreme point, replace P by (P,x).

Otherwise replace Q by (Q,x). Go to Step 1.

2..................................... l



3. Solving the Master Program Using the Gradient Projection Method

We will solve the master program MP using the Gradient Projection

Method (GPM) of Rosen [2]. It may be recalled that at a feasible point,

the GPM method projects the gradient of the objective function on the

null space of the gradients of the binding constraints. It will find an

improving feasible direction, if one exists, and a one dimensional

optimization problem is solved to find the optimum distance to move in

the chosen direction. Because of the special structure of the master

problem, closed form solutions to the above can be obtained, and the

resultant algorithm is given below. Section 4 shows that the steps

specified are precisely those obtained by the GPM method.

Algorithm:

Step 0:

Choose a point (u1 ,v1) with e uI = 1, uI > 0 and vI ) 0.

Let I = {i: u. ) 0} ; II I =n
p p p

I = {i: X)O} ; id{ = d  ; n =n + nd

Kp = {i: u1 = 0} ; K = I\K IKpI = p

Kd= {i: vi = 0} Kd Id\Kd IKdI = d

Let k 1 and go to step 1.

Step 1:

Compute Vf(uk,vk)

where f(UkVk) -- VUk V....k)

Vk vk k

2 , n )

Let Vf(uk,vk) (V ,V,...V

V 3
I.,



Step 2:

Computer dk as follows:

0 if j e K UK
p d

di = - if j c K , j = 1,2,...,n (1)k p
vk  if j e Kd

where E v
jcK p

p

If dk *0 go to step 3.

If dk = 0, compute w as follows:

w 0 - (_ -- )v_ (2)

J- K p p ..

viR = { if ieK
W i  ff ( 3 )

V k  if ieK d
k d

If wi 0, the current solution is optimal to MP. Otherwise, let

w min {w Update K and Kd by deleting the index J, and repeat
pdp

icKpUK d P

Step 3:

Let Xk min (A X max)

where

2 (Uk)t d + cd
* = k k k
= - (4)

2d k B dk

-+. . .: ,+, .,,a.. ,, = , . .. .:,,#,, . . . .: + - , ... - . - . . . . . - :. . .. . .



and Xa the maximum value of X such that (Uk,vk) + Xd is nonnegative,

clearly max = if dk > 0 and Xa = min {Xu,Av} if dk 0

where

Xu min [-uj/di: Jd<
A mm k k k (O

v min {-vJ/dJ : j d  <
A in k k ' dk < 

If Xk co the original problem is unbounded. Otherwise, let

(uk+l) =(uk) + Xkdk
k+1 k

Update Vp, Kd

Replace k by k+l and go to Step 2.

It may be noted that at step 0 of iteration 2 onwards of the main

algorithm, one could use the optimal of the previous iteration as the

starting point. Also, in solving the master problem, at each iteration

only K and K need be updated at Step 2. At Step 3, in computing X it
p d

- t
may be convenient to update B = (PQ) B(PQ) as follows.

Consider the case where the subprogram yields an extreme point p.

We must introduce a new row and column to B. Denoting the column of P(Q)

by P (Q1 ), it is easily verified that the new matrix is

Vi

7--
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where

PtBP if i-at P --p
Q B- if iCI d  ,..

ptBPi  if iCl

-t --

e p Bp

In the following section, we give a justification to the algorithm

based on the gradient projection method of Rosen and using the structure

of the master program. For more details about the gradient projection

method see [6].

4. Justification of the procedure

Let M be the matrix of the coefficients of the binding constraints.

M has the following form:

et0

D 0

0 C

6
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t
where e is a lxn vector of ones, D is a pxn matrix and p JK 1. Each

p p p

row in D has zeros everywhere except a -1 in the jth column where JcK .

C is a dxn matrix where d = IKdl. Each row in C has zeros everywherep

except a -1 in the jth column where jEK d '

t -1
It is easy to show that (M M) is as follows:

1~~ (.2~)tiP~ 0n-p n -) , ,.

1 I 1 n
e 1  +- Enp-p n n -p .

o 0
nd

where E is an npXnp matrix with ones everywhere, and Ii is an ixi

identity matrix.

Then it can easily be verified that d k = -PVf(uk,vk) =

[I-Mt(MMt)- M] Vf(ukvk) is given by (1), and w = (MMt)- MVf(uk,vk) is

as given by (2) and (3). Let (X) = f((v) + dk k)

Solving d* = 0 for X gives X of Eq. (4).

5. A Reduced Gradient Algorithm

We now present a reduced gradient algorithm [6] to solve the master

problem MP.

Algorithm

Step 0:

Choose a point y, ( u l ) satisfying

7



e ul=

yl > 0

Let k I and go to Step 1

Step 1:
t tt

Let dt = (dB,dN) where

Let ik be the index of a positive component of (uk) (which will be
k

- t
the current basic variable). Let B be the ikth row of B and r =

By + -C -Bkt -E .e

The components of dN are given by

d fjif * 'k and rj > 0
d -{yjr. if J * ik and r. > 0

dB =d ed =- E d
k N~

If d = 0, stop; Yk is a Karush-Kuhn-Tucker point; Otherwise go to

Step 2.

Step 2:

Compute

2YkBd k + ct dk

2dkk Bd-"

Let Xk  min{X ,X max I

where:

n - <0 if d 0
Xmax  = djk jk 

-k

maxif dk ) 0

i::i i: - '-. ::: ".-. ..8



and yik' d are the jth components of Yk and dk respectively. If
i'jkOfY k

xk = ' the original problem is unbounded. Otherwise let yk+l Yk +

xk d and let k = k + I, and return to step 1.

The reader may note that the procedure for updating B at each main

iteration of the algorithm discussed in Section 3 holds in this case

also.

Summary

We have presented above two algorithms to solve the master problem,

Although no proof is available for the convergence of the Gradient

Projection Method, it is generally recognized that the method converges.

For the Reduced Gradient Algorithm, the reader may refer to [6] for a

convergence proof. Finite convergence of the main iteration of Sacher's

algorithm is obvious. At present computational testing is on hand to

compare the effectiveness of the proposed procedures. Other schemes for

special cases of the problem are also being developed.
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